《二次函数》数学教案设计

发布时间:2021-12-27 08:04:46

二次函数的教学设计

教学内容:人教版九年义务教育初中第三册第108页

《二次函数》数学教案设计

教学目标:

1。1。理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2。2。通过变式教学,培养学生思维的敏捷*、广阔*、深刻*;

3。3。通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1。写出圆的半径是r(cm),它的面积s(cm2)与r的关系式

答:s=πr2。①

2。写出用总长为60m的篱笆围成矩形场地,矩形面积s(m2)与矩形一边长l(m)之间的关系

答:s=l(30-l)=30l-l2②

分析:①②两个关系式中s与r、l之间是否存在函数关系?

s是否是r、l的一次函数?

由于①②两个关系式中s不是r、l的一次函数,那么s是r、l的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),

那么,y叫做x的二次函数。

注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。

练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如:;;;的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放*的练习培养学生思维的发散*、开放*。题目用了一些人*化的词语,也增添了课堂的趣味*。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、*质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、*质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1。1。尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2。2。模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

x

-3

-2

-1

0

1

2

3

y=x2

9

4

1

0

1

4

9

二、描点、连线:按照表格,描出各点。然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来。

对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

练习:画出函数;的图象(请两个同学板演)

x

-3

-2

-1

0

1

2

3

y=0。5x2

4。5

2

0。5

0

0。5

02

4。5

y=-x2

-9

-4

-1

0

-1

-4

-9

画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数y=ax2的图象是一条抛物线。

(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

三运用新知、变式探究

画出函数y=5x2图象

学生在画图象的过程当中遇到函数值较大的困难,不知如何是好。

x

-0。5

-0。4

-0。3

-0。2

-0。1

0

0。1

0。2

0。3

0。4

0。5

y=5x2

1。25

0。8

0。45

0。2

0。05

0

0。05

0。2

0。45

0。8

1。25

教师出示已画好的图象让学生观察

注意:1。画图象应描7个左右的点,描的点越多图象越准确。

2。自变量x的取值应注意关于y轴对称。

3。对于不同的二次函数自变量x的取值应更加灵活,例如可以取分数。

四。四。归纳小结、延续探究

教师引导学生观察表格及图象,归纳y=ax2的*质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下*质:

一般的,二次函数y=ax2的图象是一条抛物线,对称轴是y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

五回顾反思、总结收获

在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观*,适时地对某些观点作出判断,或与学生一同讨论。)

看了《二次函数》数学教案设计还看了:
  • 数学教案二次函数教学设计

    教学内容:人教版九年义务教育初中第三册第108页教学目标:1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2.2.通过变式教学,培养学生思维的敏捷*、广阔*、深刻*;3.3.通过二次函数的教学让学生进一...

  • 高一数学二次函数教学方案设计

    2.5函数、方程与不等式一、数学应用3.例题2如图是一个二次函数=f(x)的图象.(1)写出这个二次函数的零点.(2)写出这个二次函数的解析式.(3)确定f(-4)f(-1)、f(0)f(2)的符号.二、建构数学问题5由例题2的图象可以发现...

  • 二次函数数学教案设计范例

    一、教学目的1.使学生初步理解二次函数的概念。2.使学生会用描点法画二次函数y=ax2的图象。3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。二、教学重点、难点重点:对二次函数概念的初步理解。难点:会用描点法画二次函数y=ax2...

  • 初中二次函数教学设计

    【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,...

  • 二次函数教学设计

    教学目标:1、使学生会用描点法画出=ax2的图象,理解抛物线的有关概念。2、使学生经历、探索二次函数=ax2图象*质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数=ax2的图...