一.整式
※1.单项式
①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的*质符号,如果一个单项式只是字母的积,并非没有系数.
③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
※3.整式单项式和多项式统称为整式.
二.整式的加减
1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三.同底数幂的乘法
※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
四.幂的乘方与积的乘方
※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2..
※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同.
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数).
※7.幂的乘方与积乘方法则均可逆向运用.
五.同底数幂的除法
※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).
※2.在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;
七年级数学下册期末知识点2
第四章生活中的变量
一、变量、自变量与因变量
①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量)。
二、变量之间的表示方法:
①列表法
②关系式法:能精确地反映自变量与因变量之间数值的对应关系。
③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量。
第五章生活中的轴对称
一、轴对称图形与轴对称
①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。
②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形
二、角平分线的*质:角平分线上的点到角两边的距离相等。
∵∠1=∠2pb⊥obpa⊥oa
∴pb=pa
三、线段垂直平分线:
①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②*质:线段垂直平分线上的点到线段两个端点的距离相等。
∵oa=obcd⊥ab
∴pa=pb
四、等腰三角形*质:(有两条边相等的三角形叫做等腰三角形)
①等腰三角形是轴对称图形;(一条对称轴)
②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)
③等腰三角形的两个底角相等。(简称:等边对等角)
五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边)
六、等边三角形的*质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有*质。
①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴。
七、轴对称的*质:
①关于某条直线对称的两个图形是全等形;②对应线段、对应角相等;
②对应点的连线被对称轴垂直且平分;④对应线段如果相交,那么交点在对称轴上。
八、镜子改变了什么:
1、物与像关于镜面成轴对称;(分清左右对称与上下对称)
2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题
第六章概率
一、概率:反映事件发生可能*大小的数。事件p的概率=
二、事件的分类
三、游戏是否公平:双方事件发生的概率是否相等。
七年级数学下册期末知识点整理3
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n?=?am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n?=amn。
3、此法则也可以逆用,即:amn?=(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn?=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍*,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
小编为大家整理的七年级数学下册期末知识点归纳整理,大家一定要仔细琢磨,理解,才能取得好成绩哦!
七年级下册数学知识点:中位数知识点4
学习可以这样来看,它是一个潜移默化、厚积薄发的过程。小编为大家带来了中位数知识点的七年级下册数学知识点,希望能够帮助到大家。
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。(注意:中位数和众数不同,中位数不一定在这组数据中。而众数必定在该组数据)
作用
在一个等差数列或一个正态分布数列中,中位数就等于算术平均数。在数列中出现了极端变量值的情况下,用中位数作为代表值要比用算术平均数更好,因为中位数不受极端变量值的影响;如果研究目的就是为了反映中间水平,当然也应该用中位数。在统计数据的处理和分析时,可结合使用中位数。
意义
1、意义:反映了一组数的一般情况。从中位数的定义可知,所研究的数据中有一半小于中位数,一半大于中位数。
2、中位数的优缺点:中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,有时用它代表全体数据的一般水平更合适。
3、在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值。
4、中位数也可表述为第50百分位数,二者等价。
5、直观印象描述:一半比“我”小,一半比“我”大。
计算方法
1.求中位数,首先要先进行数据的排序(从小到大),然后计算中位数的序号,分数据为奇数与偶数两种来求。排序时,相同的数字不能省略)。
如果总数个数是奇数的话,按从小到大的顺序,取中间的那个数。
如果总数个数是偶数的话,按从小到大的顺序,取中间那两个数的平均数。
例:2、3、4、5、6、7中位数:中间的两个数相加后除2=(4+5)/2=4.5
在物价涨幅攀升的时候,适当提高企业退休人员养老金标准以及在职职工的*,有利于保障他们的基本生活,并逐步提高生活质量。但是,只提供一个“平均数”让人心里总是有点不踏实。一个平均数会掩盖很多的问题,不久前网友还创作了这样的打油诗:“张村有个张千万,隔壁九个穷光蛋,平均起来算一算,人人都是张百万。”对于这样的问题,不是“平均数”的错,也不是统计学的错,统计学中有现成解决的办法,就是计算“中位数”。所谓“中位数”,以一个51人的企业为例,把所有人员年收入从大到小排列,正中间的一位,即第26位的年收入就是这家企业年收入的中位数。打油诗里的“张村”个人财产中位数就是“零”。这个时候平均数不能说明的问题,中位数就说清楚了。
注意:是从小到大,或者从大到小,不是随意乱排。
中位数是一组数据的中间水平。若是偶数数据,中位数就是这组数据中间两数的平均数。
值得大家注意的是中位数算出来可避免极端数据,代表着数据总体的中等情况。
精编七年级数学下册实数期末备考知识点5
【知识点一】实数的分类
1、按定义分类:2.按*质符号分类:
注:0既不是正数也不是负数.
【知识点二】实数的相关概念
1.相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
2.绝对值|a|≥0.
3.倒数(1)0没有倒数?(2)乘积是1的两个数互为倒数.a、b互为倒数.
4.平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.
5.立方根
如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
【知识点三】实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
【知识点四】实数大小的比较
1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
3.无理数的比较大小:
【知识点五】实数的运算
1.加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.
2.减法:减去一个数等于加上这个数的相反数.
3.乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.
4.除法
除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.
5.乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.
(3)零指数与负指数
【知识点六】有效数字和科学记数法
1.有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.
2.科学记数法:
把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.
关于七年级下册数学期中考试知识点6
一、知识点:
1、“三线八角”①如何由线找角:一看线,二看型。同位角是“f”型;内错角是“z”型;同旁内角是“u”型。②如何由角找线:组成角的三条线中的公共直线就是截线。2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。简述:平行于同一条直线的两条直线平行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和*质:判定定理*质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的*质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。若三角形的三边分别为a、b、c,则
6、三角形中的主要线段:三角形的高、角平分线、中线。注意:①三角形的高、角平分线、中线都是线段。②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
七年级语文下册期末考试知识点归纳7
一、解释加点的词?*
1、卿今当涂掌事?当:掌管当涂:当权2、孤岂欲卿治经为博士邪?治:研究?3、但当涉猎,见往事耳?但:只当:应当见:了解?4、孰若孤?孰:谁?5、蒙乃始就学?乃:于是?6、即更刮目相待?更:重新??7、大兄何见事之晚乎?见事:认清事物
二、翻译下列各句
1、孤岂欲卿治经为博士邪
我难道想要你研究经书当博士吗?
2、但当涉猎,见往事耳
只是应当浏览群书,了解历史罢了。
3、士别三日,即更刮目相待
士别三日,就要重新另眼看待。
4、大兄何见事之晚乎
长兄怎么认清这件事这么晚啊!
5、蒙辞以*中多务
吕蒙总是以*中事多来推辞。
三、写出自本课的成语?吴下阿蒙、士别三日、即更刮目相看(待)刮目相待、??开卷有益
四、回答下列问题:?*
1、吕蒙的变化对你有什么启示?
(1)要善于听取不同意见。(2)认识到学习的重要*,并勤奋学习,一定会学有所成。
2、①孙权与吕蒙对话的主要内容是什么?②孙权用什么方法劝吕蒙学习的?
①?劝学。②?先谈到吕蒙读书的必要*,用自己的读书的体会现身说法,说出读书的可能*。
3、找出鲁肃赞扬吕蒙的语句,并指出这里是什么描写?其作用是什么?
“卿今者才略,非复吴下阿蒙。这是侧面描写。作用是:突出表现吕蒙勤奋学习,学有所成。
《孙权劝学》和《伤仲永》对比内容和写法上的异同:(见《点拨》p118)
看了上文为大家整理的初一下学期语文期末常考考点是不是感觉轻松了许多你呢?一起与同学们分享吧.
七年级下册重点数学知识点整理8
导语:梦想在这里起飞,生活在这里灿烂。青春在这里飞扬,人生在这里充实。知识在这里升华,前途在这里铸就。开学了,祝你好好学习,圆你的梦实现你的理想。下面是小编为大家整理的,数学知识。想要知更多的资讯,请多多留意CNFLA学习网!
重要考点
1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am2)(am)n=(3)(ab)n=4)am÷an
(5)a0(a≠0)(6)a-p==
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2(a-b)2
常用公式:(x+m)(x+n)=
5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
6、互为余角和互为补角和
7、两直线平行的条件:(角的关系线的平行)①相等,两直线平行;
②相等,两直线平行;
③互补,两直线平行.
8、平行线的*质:两直线平行。(线的平行
9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义
(3)图象交点表示什么意义(4)会求平均值。
11、三角形(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的*质:
(重点)(6)等腰三角形:(a)知边求边、周长方法
(b)知角求角方法
(c)三线合一:
(7)等边三角形:
12、会判轴对称图形,会根据画对称图形,(或在方格中画)
13、常见的轴对称图形有:14、(1)等腰三角形:对称轴,*质
(2)线段:对称轴,*质
(3)角:对称轴,*质
15、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线
(4)作角的平分线(5)作三角形
16、事件的分类:,会求各种事件的概率
(1)摸球:P(摸某种球)=
(2)摸牌:P(摸某种牌)=
(3)转盘:P(指向某个区域)=
(4)抛骰子:P(抛出某个点数)=
(5)方格(面积):P(停留某个区域)=
17、必然事件不可能事件,不确定事件
18、方法归纳:(1)求边相等可以利用
(2)求角相等可以利用。
(3)计算简便可以利用。
19、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
1.七年级下册数学常考知识点(苏教版)
2.初一数学经典的知识点整理
3.2017初一下学期数学知识点整理
4.初一数学下册必会的知识点
5.初一(七年级)下册数学知识点:数据的收集、整理与描述
6.七年级数学上册期末考数学知识点整理
7.中考常考的数学知识点大全
8.浙教版七年级数学下册知识点
9.七年级下册数学概念知识
七年级地理(下册)知识点9
七年级地理下册知识点
面积最大的国家:俄罗斯幅员辽阔,面积1700多万平方千米,是世界上面积最大的国家,也是唯一地跨两个大洲和东西半球的国家。俄罗斯大部分国土在*,为什么却算作是欧洲国家?
①俄罗斯的民族和文化发源于欧洲。②俄罗斯的人口和经济集中于欧洲部分。平原广大:俄罗斯地势东高西低,大河和山脉呈伟大的地形区的重要界线。俄罗斯领土中,有70%是旷阔的平原。俄罗斯四大地形区:东欧平原、西西伯利亚平原、中西伯利亚高原、东西伯利亚山地。
温带大陆*气候为主:俄罗斯大部分地区属于温带大陆*气候,冬季漫长而严寒,夏季短促而凉爽。北*洋沿岸是终年严寒的极地气候,太平洋沿岸是温带季风气候。
丰富的资源:西伯利亚的贝加尔湖是世界上最深的湖泊,也是世界上淡水最多的湖泊。俄罗斯是一个森林资源丰富的国家,有世界上面积最大的严寒带针叶林带。俄罗斯的石油开采量居世界第三位,仅次于美国和沙特阿拉伯。黄金产量居世界第2位,仅次于南非。乌拉尔山脉蕴藏着丰富的有*金属矿产资源。矿产资源:库尔斯克铁矿、秋明油田、库兹巴斯煤田。改革中的经济:俄罗斯工业主要分布在欧洲部分,有莫斯科和圣彼得堡工业中心,还有乌拉尔工业区、新西伯利亚工业区。俄罗斯在1991年由苏联解体为俄罗斯。首都莫斯科位于东欧平原,圣彼得堡、摩尔曼斯克是其主要港口。近年来,俄罗斯加大了西伯利亚的开发力度。